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1. Introduction 
 
As with the previous report [1], our focus in addressing safety cases for ‘advanced’ control 
systems is to concentrate on the class of adaptive systems.  A system can be considered 
adaptive if its behaviour cannot be predicted solely from knowledge of its initial software 
design and state.  The behaviour of an adaptive system is the product of its initial state and 
the adaptations (state changes) that have taken place according to the stimuli it has 
encountered. 
 
Adaptive systems can be introduced to improve safety (e.g. to continue to control an aircraft 
safely in the event of losing a control surface) or to improve other system characteristics (e.g. 
to improve the fuel consumption of an aero-engine).  The motivation for introducing an 
adaptive capability has a significant impact on the nature of the required safety argument.  
Where improved safety is the goal of the adaptation, the safety argument must justify that 
the adaptive system is capable of reducing some of the risks associated with hazards already 
present with the equipment under control.  At the same, it is necessary to ensure that the 
introduction of the adaptive capability does not introduce new, or increase existing, risks.  
Where adaptation is being introduced for reasons other than safety, safety can be viewed as 
a constraint.  The principal concern is that the adaptive capability doesn’t introduce new, or 
increase existing, risks. 
 
The novelty and perceived unpredictability of adaptive systems can make safety engineers 
and regulators look sceptically upon their potential use in safety-critical applications. 
(Indeed, the international safety standard IEC 61508 [2] advises against the use of artificial 
intelligence techniques for the highest integrity applications.)  This increases the need to 
establish compelling safety cases that assure their safe use in safety-critical applications.  A 
number of arguments will be required as part of the safety case for adaptive systems. For 
example, it may be necessary to argue that levels of safety experienced with conventional 
(non-adaptive) systems are maintained, that an acceptable balance has been made between 
risk-reduction and cost, and that an adaptation mechanism is inherently safe.  This report 
presents the patterns of argument that can be used in structuring a safety case for an 
adaptive system. 
 
The structure of this report is as follows.  Section 2 provides an overview of existing 
(software) safety standards and discusses the extent to which compliance with these 
standards will result in a compelling case for safety for adaptive systems.  Section 3 presents 
a collection of fourteen argument patterns – expressed using the Goal Structuring Notation 
(GSN) – that, in composition, can be used to establish the principal arguments of safety 
required for an adaptive system.  Section 4 provides a summary of the approach outlined. 

2. The Role of Existing (Software) Safety Standards 
 

A large number of software safety standards exist to define required software safety 
assurance practice.  These standards vary in their requirements. Whilst some of this variance 
is in the detail (e.g. favoured verification methods), some large differences in philosophy 
remain.   One such philosophical difference is between so-called process assurance-based 
safety standards – such as DO-178B [3] – and product evidence-based safety standards – 
such as UK Defence Standard 00-56 Issue 4 [4].  In this section we will discuss whether 
compliance with these standards will establish a compelling safety case for an adaptive 
system. 
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2.1 Process Assurance-Based Certification 
 
A number of software assurance standards – such as DO-178B [3] and IEC 61508 [2] – are 
described as being “process-based”, in that they define a set of practices to be adhered to in 
the development, verification and validation of software.  In such standards the software 
processes are typically prescribed according to the criticality of software failure. In the civil 
aerospace domain Development Assurance Levels (DALs) (e.g. see [3]) are used to define the 
level of rigour required. In the European rail, process industry, and automotive domains 
Safety Integrity Levels (SILs) (e.g. see [2]) are used.  SILs and DALs are similar concepts, but 
differ in the details of their allocation, requirements and application. 
 
Both SILs and DALs define the level of risk reduction expected from a software system.  The 
greater the criticality of a software-involved system, the greater the risk reduction is 
necessarily attributed to that system.  SILs and DALs can also be thought of as specifying the 
required degree of freedom of the system from flaw.  For software systems, this particularly 
relates to the degree of freedom from systematic errors in the design – introduced through 
failings in the software production process. Processes and techniques are specified for each 
SIL / DAL.  The higher the SIL / DAL, the more demanding are the requirements on the 
software production process. 
 
The following quote from the introduction to DO-178B summarises the philosophy behind 
the organisation of the standard: 
 

“These guidelines are in the form of: 
- Objectives for software life cycle processes. 
- Descriptions of activities and design considerations for achieving those 
objectives. 
- Descriptions of the evidence that indicates that the objectives have been 
satisfied.” 

 
DO-178B defines an outline software life-cycle (as shown in Figure 1). The main stages of this 
life-cycle are: 
 

• Software Requirements (both High-Level and Low-Level) 
• Software Design 
• Software Coding 
• Integration 

 
Many of the requirements of DO-178B are expressed over this model of the process.  For 
example, there are requirements (called ‘objectives’ in DO-178B) concerned with the 
consistency of the artefacts produced at each stage, and of the compliance between the 
artefacts of one stage (e.g. source code) and the artefacts of another (e.g. low-level 
requirements).  DO-178B places a strong emphasis on traceability, and the human review of 
artefacts (such as requirements).  DO-178B also strongly favours testing as the primary 
means of verification. 
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A-7.3-4 Functional Coverage (test)
A-7.5-7 Structure Coverage (test)

 
 

Figure 1 – DO-178B  Life-cycle and Objectives 
 
 
The objectives of DO-178B vary according to DAL.  At level D, the lowest level, 28 objectives 
are defined (covering aspects such as configuration management, tool qualification, and 
high-level requirements coverage).  At level C, a further 29 objectives are added (covering 
aspects such as statement coverage, and testing of low-level requirements).  At level B, a 
further 8 objectives are added (covering aspects such as decision coverage).  Finally, at level 
A the requirement for MC/DC coverage is added, together with greater source code to 
object code traceability.  In total, 66 objectives are defined for a Level A compliant software 
development. 
 

2.1.1 Applying Process-Assurance Approaches to Adaptive Systems 
Justification 

 
It is possible to applying a process-assurance approach to the development of an adaptive 
system.  However, it is important to recognise a key difference that exists between the 
development of conventional software system and the development of an adaptive software 
system.  In the development of conventional systems, requirements are refined, 
decomposed and allocated to the point where a deterministic solution is produced.  In the 
development of adaptive systems, the ultimate refinement of operational behaviour is 
performed at run-time.  Development of an adaptive system is concerned with the creation 
of a system that can, in operation, alter its behaviour response to adaptation stimuli.  
Therefore, assurance of the development process of an adaptive system may ultimately fail 
to provide a compelling basis for an argument of acceptably safe behaviour.  Where 
adaptation following the initial implementation of an adaptive system can have an impact on 
safety this must be included with the scope of the safety argument. 
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It is hard to establish a safety case for an adaptive system purely from the satisfaction of 
positively expressed requirements. Such requirements describe the desired behaviour of the 
adaptation mechanism.  Safety requirements often have a negative focus [5].  They define 
properties that the software should not exhibit in operation.  This can create difficulties in 
assessing the completeness of any testing performed purely from a perspective of 
implementation ‘compliance’.   
 
The lifecycle of software assurance standards such as DO-178B can also pose a problem for 
the development of adaptive systems. The lifecycle shown in Figure 1 assumes the 
‘conventional’ progression of requirements to design to implementation.    The development 
of adaptive systems does not always fit neatly within such a process.  For example, adaptive 
systems are often employed in situations where an exact specification of required behaviour 
cannot be provided.  System development may start from an intentionally incomplete 
specification that will need to be refined through an initial period of training. The 
development of safety requirements will have to be determined incrementally as the 
behaviour of the adaptive system emerges through adaptation.  In this regard, the lifecycle 
of adaptive system development may be much closer to evolutionary software development 
lifecycles such as Boehm’s spiral model [6].  
 
A limitation of DO-178B is that it currently strongly emphasises testing as the primary means 
of software verification.  The results of exhaustive testing provide strong evidence for claims 
about software behaviour.  However, it is unlikely to be possible to provide adequate test 
coverage of an adaptive system. The behaviour of the system depends not only on its static 
structure and immediate stimuli but on the behaviour that it has learned, which in turn 
depends on the adaptation stimuli (e.g. training data) that it has learnt from.  In the case of 
online learning, the behaviour of the system depends on the current stimuli and (potentially) 
all previous stimuli.  Testing is likely to be impractical, particularly if the input space is large 
[7]. 
 
There are, in any case, problems with the use of testing for strong safety claims about 
conventional software. For example, Littlewood and Strigini note in [8] that, at best, 
statistical testing can show a failure rate of around 10-4 per operating hour. This figure is 
inadequate for many safety-critical software applications. 
 
In the revision of DO-178B (to produce DO-178C) proposals have been made to generalise 
the wording to call for ‘verification’ instead of specific methods (such as ‘testing’ or ‘review’).  
This approach “opens the door” for alternative forms of evidence to be selected without 
needing to be justified as a deviation from the defined verification approach.  The use of 
alternative (analytic) forms of evidence is discussed further in section 2.2.1. 
 

2.2 Product-Based Certification 
 
Product-based certification focuses on the construction of well-structured and reasoned 
safety arguments. Arguments are required to demonstrate the satisfaction of product-
specific safety objectives derived from hazard analysis; justify the acceptability of safety, 
based upon product-specific and targeted evidence; and (potentially) justify the 
determination of the safety objectives and selection of evidence.   The arguments and 
evidence required to justify acceptable safety form the safety case, and are often 
summarised in a safety case report [9].  This is the approach required by the UK Defence 
Standard 00-56 Issue 4 [4]. 
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For software, product-based certification demands that software level safety claims are 
hazard-based – i.e. they concern failures of the software that are believed to lead to system 
level hazards.  Ideally, these claims should be derived from a system-level safety case.  In a 
system-level safety case a claim relating to a specific behaviour of the software may be seen 
as a contributing, but undeveloped argument.  From the perspective of software safety, such 
claims are the starting point for the construction of the software safety case.  This is the 
intended relationship between system and software level safety cases under UK Defence 
Standard 00-56 Issue 4 [4].  This means that the focus in the software level safety arguments 
is on “demonstrating the safety of …”, rather than “demonstrating the development of …” 
the software system.  Arguments and evidence about the development process followed are 
not of interest unless they can somehow be specifically related to the product-specific 
software safety claims. 
 
The principle that the risks should be reduced As Low As Reasonably Practicable (ALARP) is 
core to the UK Defence Standard 00-56.  The ALARP principle (discussed in more detail later 
in section 3.7) allows the benefit associated with the risks being posed, and the 
proportionality of the costs involved in risk reduction, to be included in the arguments of risk 
acceptance.  As discussed later, the ALARP principle is potentially valuable when attempting 
to argue the acceptability of risks associated with adaptive systems – particularly in 
situations where an adaptive capability is brought in for reasons other than safety.  The 
ALARP principle is now also included in US MilStd 882 (at draft E) [10] as a means of 
justifying risk acceptance. 
 
Safety Integrity Levels (SILs) no longer form part of the requirements of UK Defence 
Standard 00-56.  Instead, 00-56 requires that the level of evidence presented in the safety 
case ought to be chosen according to the level of risk associated with the system: 
 

“The quantity and quality of the evidence shall be commensurate with the 
potential risk posed by the system and the complexity of the system.” 

 
This requirement is coupled with the following guidance on the relative strength of different 
forms of argument and evidence: 
 

“In general, arguments based on explicit, objective evidence are more 
compelling than those that appeal to judgement or custom and practice. It is 
therefore recommended that any argument should be developed in accordance 
with the following precedence: 
 

• Deductive, where the conclusion is implicit in the evidence used to 
support the argument. 

• Inductive, where the argument is firmly based on the evidence 
presented, but extrapolates beyond the available evidence. 

• Judgmental, where expert testimony, or appeal to custom and practice 
is necessary to support the conclusion.” 

 
By comparison, US MilStd 882E has, in guidance, the concept of Software Control Categories 
as a means of expressing the criticality of the software component of a safety-critical system.  
As with 00-56, the criticality can be used to moderate the strength of argument and 
evidence required to assure the safe behaviour of the software. 
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There is no direct equivalent to the 00-56 requirement for the production of Safety Cases 
and Safety Case Reports in MilStd 882E.  882E does talk about the production of a “technical 
data package”.  However, this seems to be a collation of the project safety evidence, e.g. test 
results and safety analyses, rather than an explicit presentation of safety arguments and 
evidence as required by a Safety Case Report in the UK. 
 
In practice, differences in UK and US practice in the area of safety cases do cause project 
difficulties.  In particular, the UK expectation of the content, scope and depth of a safety 
case report is unfamiliar to many US system suppliers.  However, there are an increasing 
number of instances of where US suppliers are beginning to produce safety cases (for 
systems exported to the UK and for joint US-UK initiatives). 
 
The US, with UK Ministry of Defence sponsorship, is looking to adapt MilStd 882 to remove 
the differences/risks currently perceived as existing between these standards. The aim being 
worked towards is to have an "industry version" of MilStd 882 which could meet both the 
"formal" requirements of MilStd 882 and UK Defence Standard 00-56 Issue 4.  
 
 

2.2.1 Applying Product-Based Assurance Approaches to Adaptive Systems 
Justification 

 
A product evidence-based approach to the assurance of the safety of adaptive systems 
demands the production of safety arguments that are hazard and risk focused.  A safety case 
is required that identifies and addresses failures of the adaptive system that can be shown 
to contribute to system level hazards.  A product evidence-based approach is not primarily 
concerned with how an adaptive system has been developed.  Instead, it is concerned with 
operational behaviour of the system.  Whilst this is ultimately a more direct and compelling 
approach to the justification of safety, it means that the arguments of safety will be forced 
to engage in the details of the mechanisms and stimuli that lead to (potentially unsafe) 
changes in the behaviour of an adaptive system.   
 
Both the concept of software ‘criticality’ in 882E and the notion of moderating arguments 
and evidence according to the risk associated with system operation (from 00-56) have 
bearing on the safety cases required for adaptive systems.  Where adaptive systems are 
placed in low-criticality (e.g. advisory) roles, the strength of argument required is low. It may 
even be possible to rely upon inductive statistical evidence concerning the performance of 
the adaptive system (e.g. as suggested by approaches such as [11]).  However, if adaptive 
systems are to be placed in high-criticality applications (e.g. with direct autonomous control 
over safety-critical functions) then strong, deductive and analytical arguments and evidence 
will be required.   
 
There have been previous examples where testing has been shown to provide inadequate 
evidence of the safety of a software system, and where analysis has been shown to be 
preferable.  An example of this can be seen in scheduling for safety-critical control systems, 
with the move from cyclic executive schedulers to fixed-priority task structure schedulers. 
Fixed priority schedulers have many desirable properties when compared to cyclic 
executives, but their behaviour is not deterministic and therefore they are much less 
amenable to testing. Analysis is therefore needed in order to provide adequate guarantees 
of their real-time performance [12]. 
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3. Safety Case Patterns for Adaptive Systems 
 
The previous report [1] outlined out possible approaches to arguing the safety of adaptive 
systems.  The earlier analysis in the project indicated that a product-focused argument 
would be needed.  The report set out some outline arguments necessary to provide this 
product-focused argument.  However, no “joined up” argument was produced. This section 
of the report expands upon these original arguments and documents them as fourteen 
argument patterns described using the Goal Structuring Notation (GSN).    The aim in 
presenting this collection of patterns is to indicate how the overall argument of acceptable 
safety can be decomposed to the point where the necessary claims regarding the technical 
characteristics of an adaptive system are clearly identified. 
 
Before presenting the patterns in sections 3.2 to 3.11, the following section presents a brief 
overview of the use of GSN to present safety arguments, and safety argument patterns. 
 

3.1 Using GSN to Present Safety Arguments 
 
The Goal Structuring Notation (GSN) [13] – a graphical argumentation notation – explicitly 
represents the individual elements of any safety argument (requirements, claims, evidence 
and context) and (perhaps more significantly) the relationships that exist between these 
elements (i.e. how individual requirements are supported by specific claims, how claims are 
supported by evidence and the assumed context that is defined for the argument).  The 
principal symbols of the notation are shown in Figure 4 (with example instances of each 
concept). 
 

 
System can

tolerate single
component

failures

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1

Goal Solution Strategy

All Identified
System
Hazards

Context
Undeveloped Goal

(to be developed further)
 

 
Figure 2 – Principal Elements of the Goal Structuring Notation 

 
  
When the elements of the GSN are linked together in a network they are described as a ‘goal 
structure’. The principal purpose of any goal structure is to show how goals (claims about 
the system) are successively broken down into sub-goals until a point is reached where 
claims can be supported by direct reference to available evidence (solutions). As part of this 
decomposition, using the GSN it is also possible to make clear the argument strategies 
adopted (e.g. adopting a quantitative or qualitative approach), the rationale for the 
approach and the context in which goals are stated (e.g. the system scope or the assumed 
operational role).  
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Figure 3 shows an example goal structure for a conventional control system.  In this 
structure, as in most, there exist ‘top level’ goals – statements that the goal structure is 
designed to support.  In this case, “C/S (Control System) Logic is fault free”, is the (singular) 
top level goal. Beneath the top level goal or goals, the structure is broken down into sub-
goals, either directly or, as in this case, indirectly through a strategy. The two argument 
strategies put forward as a means of addressing the top level goal in Figure 5 are “Argument 
by satisfaction of all C/S (Control System) safety requirements”, and, ”Argument by omission 
of all identified software hazards”. These strategies are then substantiated by five sub-goals. 
At some stage in a goal structure, a goal statement is put forward that need not be broken 
down and can be clearly supported by reference to some evidence. In this case, the goal 
“Unintended Closing of press after PoNR (Point of No Return) can only occur as a result of 
component failure”, is supported by direct reference to the solutions, “Fault tree cutsets …” 
and “Hazard Directed Testing Results”. 
 
 
 G1

C/S Logic is fault free

S1

Argument by
satisfaction of all C/S
safety requirements

S2

Argument by omission
of all identified software
hazards

C1

Identified
software hazards

G2

Press controls being
'jammed on' will cause
press to halt

G3

Release of controls prior to press
passing physical PoNR will
cause press operation to abort

G4

C/S fails safe (halts) on, and
annunciates (by sounding
klaxon), all single component
failures

Sn1

Black Box
Test Results

G5

'Failure1' transition of PLC
state machine includes
BUTTON_IN remaining true

G7

'Abort' transition of PLC
state machine includes
BUTTON_IN going FALSE

Sn2

C/S State
Machine

G8

Unintended opening of press
(after PoNR) can only occur
as a result of component
failure

G9

Unintended closing of press
can only occur as a result of
component failure

Sn3

Fault tree analysis
cutsets for event
'Hand trapped in

press due to
command error'

Sn4

Hazard
directed test

results

 
 
 

Figure 3 – An Example Goal Structure (for a conventional system) 
 
 
A number of extensions have been made to GSN to support express of generalised / 
abstracted safety argument patterns. Figure 4 shows a simple goal structure pattern that 
uses these extensions.  In this structure, the top-level goal of system safety (G1) is re-
expressed as a number of goals of functional safety (G2) as part of the strategy identified by 
S1.  In order to support this strategy, it is necessary to have identified all system functions 
affecting overall safety (C1) e.g. through a Functional Hazard Analysis.  In addition, it is also 
necessary to put forward (and develop) the claim that either all the identified functions are 
independent, and therefore have no interactions that could give rise to hazards (G4) or that 
any interactions that have been identified are non-hazardous (G3). 
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G1: {System X} 
is Safe

G2: {Function Y} 
is safe

S1: Argument over
 all  safety-related 

functions of system

C1: Safety Related
Functions of {System X}

(n = # functions)

n

G3: Interactions 
between system 

functions are 
non-hazardous

G4: All system 
functions are 
independent

(no interactions)

Provides {Function Y}

Indicates that 
element 

remains to be 
developed 

(supported)

Indicates that 
element 

remains  to 
be 

instantiated
Indicates a 1-
to-many 
relationship

Indicates that 
element remains 
to be instantiated 
and then 
developed

1 of 2
Indicates a choice

 
Figure 4 – GSN Extensions for Pattern Description 

 

The following sections (3.2 to 3.11) use GSN, and the extensions for presenting generalised / 
abstracted arguments, to present fourteen safety case argument patterns that can be used 
to establish the principal arguments of safety required for an adaptive system. 
 

3.2 Improved or Maintained Safety 
 
The first argument pattern deals with the distinction (as discussed in Section 1 of this report) 
as to whether we have introduced an adaptive capability to improve safety or to improve 
some other system attribute (e.g. performance).  This distinction can govern whether safety 
is viewed as an objective or a constraint, and impacts upon the top-level claims of any safety 
argument.  Figure 5 outlines the structure of the top-level argument.  
 
Regardless of the motivation for introducing adaptation, the goal Top must be supported.  
As with any such top-level claim, context such as the adaptive system definition (SysDefn) 
and the operating region over which the system is considered to be safe (SafeOpReg) must 
be provided.  SafeOpReg defines the entire space of normal and abnormal operating 
conditions under which the adaptive system will continue to operate safety.   
 
Underneath Top we see the choice in supporting claims that is associated with the 
motivation for introducing safety.  If we have introduced adaptation to improve safety 
ImpSaf represents the claim that should be made.   If adaptation has been introduced for 
reasons other than safety AdaptNotUnacc should be stated.    AdaptNotUnacc states that 
safety is maintained even in the presence of introducing an adaptation capability.   There are 
two possible means of supporting this claim.  One approach is to argue by comparison.  To 
do this, a definition of the ‘conventional’ (non-adaptive) system being used as the basis 
comparison needs to be referenced by ConvSys.  (As shown in the pattern, this is also 
required for the argument of improvement of safety ImpSaf.)  An alternative to comparison 
is to argue by reference to addressing defined risk acceptance criteria that exist 
(AdaptRiskAcc).   



 11

 

 
 

Figure 5 – Improved or Maintained Safety Argument 
 

3.3 Improved Safety 
 
Continuing from the previous pattern, Figure 6 shows the argument pattern for supporting 
the claim that the adaptive capability of the system has improved safety (ImpSaf). 
 

 
 

Figure 6 – Improved Safety Argument 
 
The argument of improved safety implies that the operating region of the system has been 
extended – i.e. that there were operating conditions that would have previously led to an 
unsafe state, and that are now addressed by the introduced adaptive capability.  It is 
important to define clearly how the operating region of the system has been extended, 
when compared to the operating region of the conventional (non-adaptive) system.  This is 
achieved through instantiating ExtOpReg and ConvOpReg. 
 
As shown, there are three elements to the argument of improved safety.  Firstly, that the 
adaptive system is helping to reduce risk in the extended operating region (IncSafExt).  
Secondly, that no new or increased risks are present in the extended operating region 
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(NoNewExt).  Finally, the increased safety in the extended operating region cannot be at the 
expense of reduced safety in the operating region previously addressed by the conventional 
(non-adaptive) system.  This argument is captured in claim ALASConv.  
 

3.4 Maintained Safety 
 
The argument of maintained safety is a subset of the argument of improved safety discussed 
in the previous section.  This is the essential argument required when adaptation has been 
introduced for reasons other than safety (e.g. to improve performance or availability or to 
reduce costs). Figure 7 outlines the required components of this argument. 
 

 
 

Figure 7 – Maintained Safety Argument 
 
The adaptation capability of the system has extended the operating region of the system 
(ExtOpReg).  The first concern is that there are no increased risks in this extended operating 
region (NoNewExt).  Secondly, we are concerned that the adaptive system is at least as safe 
as the ‘conventional’ system (ALASConv) over the previously covered operating region 
(ConvOpReg).    In the next section we use an existing argument pattern to illustrate the 
required elements of an argument capable of supporting ALASConv. 
 

3.5 At Least As Safe 
 
Figure 8 shows an existing pattern that illustrates the challenges that must be addressed 
when attempting to argue that one system is at least as safe as another.   The top two layers 
of this pattern overlap with the arguments already presented in the previous sections 
(specifically NotIncRiskCov, AdaptNotUnacc, and Top).  (Note – the diamond symbol 
represents a contextual reference to system model information.) The argument required to 
support ALASConv is shown in the strategy AtLeastAsSafeArg and its supporting elements. 
 
In the absence of acceptability targets / criteria for the ‘new’ adaptive system, an obvious 
minimal requirement is that overall safety is not worsened by the introduction of the new 
system.  (In general, it is usually desired that the overall level of safety is either the same or 
improving over time – deterioration is not usually accepted).  
 

NotIncRiskConv

Adaptive capability of system does 
not result in an increased level of 
risk compared to {conventional (non-
adaptive) system}

inter pattern link

NoNewExt 
No new / increased risks 
introduced in the { extended 
operating region of the adaptive 
system } 

ALASConv

{Adaptive System } is at least as 
safe in the {operating region 
covered by the conventional 
(non-adaptive) system}

inter pattern link inter pattern link

ConvOpReg 
{ Operating region 
covered by the 
conventional ( non - 
adaptive ) system } 

inter pattern link

ExtOpReg 
Extended operating 
region of the 
adaptive system 

inter pattern link 
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Importantly, to carry out this argument strategy it is essential that the safety record of the 
system being replaced is known, otherwise comparison will be impossible.  This context 
reference ExistSysSafetyRecord must be instantiated to point to the where the safety record 
of the existing system can be found.  The credibility of this argument approach hangs upon 
the integrity and completeness of this evidence. 
 
A reference is made by the pattern to a description of the ‘conventional’ system being 
replaced ExistSysDesc.  The ‘at least as safe’ approach creates a weak argument if it is not 
possible to justify that the existing system was safe ExistSysAccSafe.  Further, the ‘at least as 
safe’ approach is only valid if the two systems (existing and new) are comparable (SimilarSys).  
It is important to establish the criteria (SuffSimilarDefn) by which it shall be judged if the 
new and existing systems are sufficiently similar.  
 

SysAccSafe

{System X} is
acceptably safe

No explicit
acceptability criteria for

{System X} exist

NoAcceptCriteria

AtLeastAsSafeArg

At Least as Safe as
Existing System Argument

SysDesc
{System X} Definition

ExistSysDesc

{Existing System}
Definition

{Existing System}
Safety Record

ExistSysSafetyRec

SimilarEnv

{System X} is operating in a
sufficiently similar operating
context to {Existing System}

ExistSysAccSafe

{Existing System} was
acceptably safe

SimilarOpn

{System X} operating
behaviour sufficiently similar
to {Existing System}

SimilarSys

{System X} sufficiently
similar to {Existing System}
to merit comparison

SysMeetsExistTargets

{System X} meets or exceeds
safety targets requirements implied
by {Existing System} Safety
Record

Definition of
'sufficient' similarity

SuffSimilarDefn

Safety targets implied
by {Existing System}

Safety Record

ExistTargets

 
 

Figure 8 – At Least As Safe Argument  
 
The main claim of the ‘at least as safe’ approach is SysMeetsExistTargets.  It is necessary to 
instantiate and support the claim that, based upon criteria implied by the existing system’s 
safety record, the new (adaptive) system either meets or exceeds the safety of the existing 
system.  For this to work it must be possible to instantiate ExistTargets with reference to 
requirements derived from the operational safety record of the existing system.  These 
requirements could be both quantitative (e.g. an acceptable rate of occurrence for a hazard) 
or qualitative (e.g. the absence of a particular failure mode, or the presence of a hazard 
mitigation behaviour).    It is worth recognising that complete back-to-back verification of 
the new system against the existing system is not necessarily required.  Instead, this 
argument requires (through instantiating ExistTargets) that we are able to ‘distil’ the 
essential characteristics of the operational behaviour of the existing system to use as the 
‘benchmark’ for evaluation of the new system. 
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3.6 Risk Acceptance 
 
As discussed in section 3.4, an argument of acceptable safety does not necessarily require 
comparison with existing systems.  Figure 9 shows the alternative approach of arguing 
acceptable safety by reference to (externally) stated risk acceptance requirements.    
 
 

AdaptALARP

Risks associated with the 
operation of the {Adaptive 
system} are As Low As 
Reasonably Practicable

ALARPCrit

{ALARP Risk 
Criteria}

RiskMetReq

Risks associated with the 
operation of the {Adaptive system} 
meet or exceed {explicitly stated 
risk requirements}

ExpRiskReq

{Explicitly Stated 
Risk Requirements}

AdaptRiskAcc

Risks associated with the operation 
of the {Adaptive System} considered 
acceptable in accordance with {risk 
acceptance criteria}

inter pattern link

1 of 2

 
 

Figure 9 – Risk Acceptance Argument 
 

 
Two alternatives claims are shown in Figure 9.  The first (RiskMetReq) is that risks associated 
with the adaptive system meet or exceed some explicitly stated risk requirements (e.g. an 
overall level of tolerable risk, or an acceptable Hazard Risk Index).  The second approach 
(AdaptALARP) is potentially of more value for adaptive systems.   This claims that the risks 
associated with the operation of the system as ‘As Low As Reasonably Practicable’.  As 
discussed in the next section, the ALARP principle allows acknowledgement of the benefit 
associated with the risks being posed, and the costs of risk reduction, to be included in the 
discussion of risk acceptance. 
 

3.7 As Low as Reasonably Practicable 
 

If risks are introduced or increased by the introduction of an adaptive capability, it may be 
necessary to argue that these risks are necessarily present, and acceptably controlled.  The 
argument pattern shown in Figure 10 provides a framework for arguing that identified risks 
in a system have been sufficiently addressed in accordance with the ALARP principle.  This 
pattern could be used to support the AdaptALARP claim from the pattern described in the 
previous section. 
 
The ALARP principle divides risk into three categories.  Firstly, there are intolerable risks that 
cannot be justified on any grounds.  At the other extreme, there are risks that are 
sufficiently low to be considered negligible.  Between these two extremes (in the ALARP 
region) there are potentially tolerable risks.  The tolerability of these risks depends on 
whether they can be argued to be necessarily present and that they have been reduced to 
the point that further risk reduction would cost an amount disproportionate to the 
improvement gained. 
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System hazards
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ALARP Principle
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o
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Definition of
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Figure 10 – ALARP (As Low as Reasonably Practicable) Argument 
 
 
There are three strands to the safety argument: one tackling intolerable risks, one tackling 
tolerable risk and one discounting negligible risks. To satisfactorily support the top level goal 
(G1) it is important that these three strands (collectively) address all identified risks. The 
definitions of tolerable, intolerable and negligible (C3, C2 and C4 respectively) should 
therefore be so defined to cover and classify the range of possible levels of risks. 
 
The ALARP principle relies on some understanding (C5) of when it is no longer cost-effective 
to spend further money on risk reduction. The definitions of negligible (C4) and 
disproportionate (C5) cannot be considered entirely independently. It would not make sense, 
for example, to force risk reduction to a level below that identified elsewhere as negligible. 
 
As the goal structure shows, if the means of addressing a previously identified intolerable 
risk is to reduce it to a tolerable level, then the remaining risk must be tackled as for all 
tolerable risks. If the level of risk has been reduced to a negligible level, then the hazard 
must be tackled as a negligible risk. 
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It is important that the source of Identified System Hazards (C1) identifies the level of risk 
posed by a hazard in a way that permits sub-division into the classes of risk defined by C2, C3 
and C4. 
 
Ultimately, the ALARP pattern requires supporting arguments for the claims of elimination 
(absence) of intolerable risks (G6), acceptably low occurrence of negligible risks (G9), and 
the measures taken to reduce tolerable risks (G11). 
 

3.8 Mapping High Level Hazard Control / Risk Reduction Claims to 
the Safety Features of the Adaptive System 

 
Working top-down through the arguments presented so far, a number of leaf goals remain 
that are expressed in (general) terms of overall risk levels.  For example, consider the 
following leaf goals: 
 

• (From the “Improved Safety” pattern) IncSafExt - Adaptive capability of system 
provides an increased level of safety (reduces risk) in the {extended operating 
region} 

• (From both the “Improved Safety” and “Maintained Safety” patterns) NoNewExt - 
No new / increased risks introduced in the {extended operating region of the 
adaptive system} 

• (From the “At Least As Safe” pattern) SysMeetsExistTargets – {System X} meets or 
exceeds safety targets implied by {Existing System} Safety Record 

• (From the “ALARP” pattern) G7 - Risk associated with {Hazard X} has been reduced 
to a tolerable level. 

 
As discussed in Section 2, process-assurance based arguments could possibly be used to 
support these claims.  However, given the specific (hazard and risk oriented) nature of these 
claims, a general appeal to the integrity of the development and V&V processes would be far 
from compelling.  (Why should someone believe, for example, that no new / increased risks 
have been introduced in the extended operating region of the adaptive systems simply 
because the adaptive system has been developed to DO-178B Level A?)  Instead, a product-
based approach suggests that these claims should be decomposed to claims and evidence 
regarding the technical characteristics of the adaptive system in question.  

 
For the positive argument of increased safety through adaptation (IncSafExt) we must 
decompose this claim to the specific contributions of the adaptive software system to 
hazard mitigation.  This decomposition is shown in Figure 11.   
 
To argue improved safety it is necessary to argue that there were risks previously present 
with the conventional (non-adaptive) system that are now reduced through the introduced 
adaptation capability (AdaptRedRisks).  This risk reduction claim can be addressed though 
arguing the acceptably implementation of hazard mitigation requirements (ArgOverPosReq), 
with the requirements clearly referenced by PosRiskRedReq.  As with any such mapping of 
risks to requirements, it is necessary to argue that the requirements are valid (PosReqValid) 
and traceable (ReqTraceable).   Having established the requirement, it should be 
acknowledged that there can be a hardware and software contribution to acceptably 
addressing the requirements (e.g. a requirement on the reliability of the hardware platform 
as well as on the behaviour of the software).  This is shown in the decomposition of strategy 
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ArgSWHWOtherPos. (The ‘other’ contribution mentioned in OtherContribPosAccept 
acknowledges that other systems, including humans, can also contribute to the achievement 
of a hazard mitigation requirement.)  
 
 

 
 

Figure 11 - Top Level System-to-Software Hazard Mitigation Argument 
 
 
Importantly, for the purpose of producing a product-oriented software safety argument, we 
are left with the goal SWContribPosAccept.  This goal states that adaptive software system 
acceptably ‘plays its part’ in the implementation of hazard mitigation. 
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3.8.1 Top Level System-to-Software Hazard Contribution 
 

For the negative arguments that risks associated with the operation of the adaptive system 
are acceptably low (e.g. NoNewExt) we must decompose these claims to point where 
specific contributions of the adaptive software system to system level hazards can be argued 
to be absent.  Weaver’s [14] software safety argument presents such a decomposition, and 
is shown in Figure 12.   
 

SystemSafe

{System} is acceptably safe
to operate from a hazard
control perspective

SysDefn

System
Definition

DefnAccSafe

Definition of
acceptably safe

ReqValid

System Safety
Requirements are valid
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low rates

SysHaz

Identified System
Level Hazards

Traceability

Traceability of safety
requirements and safety
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ArgSWHWOther
Argument across software,
hardware and other parts of
{System} that may cause
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J

DependExplicit

System can be decomposed
as all dependencies between
different parts of the system
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HWContribAccept

Hardware contributions to
System Level Hazards are
acceptable

SWContribAccept

Software contributions to
System Level Hazards are
acceptable

OtherContribAccept

Other contributions to
System Level Hazards are
acceptable

SWContrib

Identified Software
Contributions to System
Level Hazards = Software
Hazardous Failure Modes

SWDefn

Software
Definition

HWDefn

Hardware
Definition

HWContrib
Identified Hardware
Contributions to
System Level
Hazards

OtherDefn

Other Components
Definition

OtherContrib

Identified Contributions
of Other Components to
System Level Hazards

 
 

Figure 12 - Top Level System-to-Software Hazard Contribution Argument (from [14]) 
 
This pattern follows a similar structure to the positive decomposition shown in Figure 11 – 
the key difference being that we considering how hazards internal to the adaptive system 
can arise (and arguing the acceptable non-occurrence of these conditions) rather than 
addressing how hazards external to the adaptive system can be controlled. 
 
Again, importantly, for the purpose of producing a product-oriented software safety 
argument, we are left with the goal SWContribAccept.  This goal states that the potential 
contributions of the adaptive software system to system-level hazards are acceptably 
controlled.  
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To decompose the argument further it is necessary to consider the detail of how software 
level contributions can be identified and caused by the software system.  Such a 
decomposition is shown by Weaver’s existing pattern Figure 13. 
 

SWContribAccept

Software contributions to
System Level Hazards are
acceptable

ArgOverSWContrib
Argument over all
identified software
contributions to system
level hazards

SWContribIdent

All software contributions to
system level hazards have
been identified

SWContrib

Identified Software
Contributions to System
Level Hazards = Hazardous
Software Failure Modes

SWSRTraceability

Traceability of software
safety requirements and
safety evidence has been
shown

HSFMAccept

All causes of Hazardous
Software Failure Mode
{HSFM} are acceptable

n
n =  # software hazardous

failure modes from SWContrib

SWDefn

Software
Definition

 
 

Figure 13 - Software Hazard Contributions Argument (from [14]) 
 

This pattern was originally developed for conventional software systems.  Whilst it remains 
valid for adaptive systems, it is important to recognise that for adaptive system, 
satisfactorily arguing that all software contributions have been identified (SWContribIdent) 
and developing the argument over all software contributions (ArgOverSWContrib) could be 
particularly challenging.    As already discussed, it is possible that with an adaptive system, 
the functional behaviour may be only partially defined at the outset of development.  
Behaviour could be learnt through a process of training.  Any learnt behaviour must be 
examined to identify whether, and how, it can contribute to system level hazards.  
 

The identification of unsafe conditions of an adapting software system was a core concern of 
the Safety Lifecycle for Artificial Neural Networks (SLANN) developed by Kurd [15]. This 
lifecycle encapsulates several development and safety tasks involved in generating adaptive 
control systems.  At the initial phases of development the domain experts and safety 
engineers may find it difficult to accurately define the desired function, and the degree to 
which the adaptive control system can be allowed to adapt. The SLANN approach addresses 
cases when there is potentially incomplete and incorrect functional specification at the 
initial phases of development. Following an evolutionary style approach, the SLANN exploits 
prior knowledge (in the form of rules that attempt to describe the desired function) 
gathered from domain experts and ‘insertion’ algorithms [15] to generate a Safety-Critical 
Artificial Neural Network (SCANN). Following an iterative approach, the SLANN further 
develops the adaptive control system using learning processes. During the learning process 
existing rules may be tuned and new rules self generated. An advantage of this approach is 
that the development of the adaptive control system will take place by directly interacting 
with the environment or problem in which it intends to operate (such as a simulation). This 
direct interaction can help address potentially unrealistic assumptions the developers may 
make. Safety assessment processes use rules that have been extracted from the SCANN and 
analyses them to determine whether the approximated function exhibits any identified 
failure modes.  
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As with conventional software systems, it is possible to classify the types of hazardous 
software failure mode that could arise from the Contributing Software Functionality (CSF). 
Pumfrey’s classification [16] uses a service-based classification of failures. The classification 
is refinement of the classifications by Ezhilchelvan and Shrivastava, and Bondavalli and 
Simoncini. This service based approach identifies five different types of failures: 
 

• Omission: The service is never delivered 
• Commission: A service is delivered when not required 
• Early: The service occurs earlier than intended 
• Late: The service occurs later than intended 
• Value: The output value has the wrong value 

 
By defining the type of failure mode of concern, it is possible to focus the argument on the 
particular causes and associated evidence for that type. This is shown in Figure 14. 
 

HSFMOmissionAccept

All causes of Hazardous
Software Failure Mode {HSFM}
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Figure 14 – Hazardous Software Failure Mode (HSFM) Classification Argument (from [14]) 
 
The classification of software failure modes can be useful for adaptive systems.  Kurd in [15] 
shows how HAZOPS (Hazard and Operability Study) guidewords can be interpreted when 
applied to an Artificial Neural Network used for a function approximation problem.  For 
example, the guideword ‘NONE’ or ‘No’ is interpreted as follows: 
 

Data value, ‘NO’: The ‘NO’ guide word was interpreted as ‘‘no output signal’’ or 
output omission. This interpretation for the SCANN [Safety Critical Artificial 
Neural Network] specifically became ‘‘no output data given an input vector’’. 
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Kurd goes on to show in [15] how the specific features of the adaptation mechanism and 
process of the SCANN can be used to argue the absence of this failure mode.  
 
The final part of mapping the claims that a software failure mode is ‘acceptably’ addressed is 
shown in Figure 15 (again, taken from Weaver’s existing pattern catalogue [14]).  
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All causes of Hazardous
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Software
Definition

 
 

Figure 15 – Hazardous Software Failure Mode Acceptability Argument (from [14]) 
 
In this argument the failure mode acceptability claim (HSFM{type}Accept) is addressed by 
either arguing that the failure mode is absent from the adaptive software functionality 
(AbsHSFM{type}), or by arguing that the failure mode is acceptably detected and handled by 
some capability external to the adaptive software functionality (HandlHSFM{type}).   (By the 
n-of-2, rather than 1-of-2 choice) the pattern also admits a third option – the use of both 
supporting arguments (i.e. that the failure mode is absent, but even if it were somehow 
present it would be detected and handled).  
 
In the domain of adaptive systems, the use of a detection and handling argument such as 
HandlHSFM{type} relates to the potential use of external monitoring of, and back-up to, the 
adaptive system (where the back-up could be a conventional system).  One such example of 
this is described in [17]. In this example the inputs into the adaptive control system are also 
fed into the ‘monitor’. In addition, the output of the adaptive control system is also fed into 
the ‘monitor’.  The monitor then uses rules and algorithms to examine each input and 
output whilst the adaptive control system is in operation (i.e. aircraft surface control). One 
goal of the monitor is to identify output failures associated with the adaptive system (i.e. if 
the output is too high or too low for the given inputs) before the control signal is sent to the 
equipment under control. If no failure is detected then the output is not suppressed. If the 
monitor detects a failure mode in the output then the monitor can ‘switch’ to alternative 
conventional control software. This control software uses conventional control algorithms 
and it is assumed that one exists for the operating context in which the adaptive system will 
be used. The conventional control system is then used to ‘take-over’ from the adaptive 
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system until the ‘monitor’ detects that the output of the adaptive control system no longer 
results in an identified failure mode. In this example, the assurance level or Safety Integrity 
Level [2] will be applicable to the monitor, the switch and the conventional control algorithm. 
However, the adaptive control system can be of arbitrary assurance level [15]. This is 
because the main thrust of the safety argument does not include claims about the adaptive 
control system output since the ‘final’ output sent to the equipment under control will not 
result in identified failure modes.  
 

One advantage of the combination of monitoring and conventional control software is that 
the approach can be applied for rapid prototypes. This can allow analysis and trials of 
adaptive control systems (of differing paradigms) and they can be efficiently assessed for 
performance. By involving monitoring approaches it can be less technically challenging to 
derive proofs and mathematical arguments concerning the behaviour of the adaptive 
control system and its capability. Another advantage is that existing standards and 
guidelines can be used to develop such systems and is therefore more realistic to generate 
safety argument that claims compliance with internal software and safety standards. As a 
result, there is greater possibility of safety case acceptance of AI based adaptive control 
systems. 
 

It may not always be possible to provide an external monitor and back-up to the adaptive 
system.   In such cases, the responsibility rests with the failure mode absence argument put 
forward by AbsHSFM{type}.  The following section explores the possible arguments that can 
be used to support this claim. 

3.9 Hazardous Software Failure Mode Absence 
 

Figure 16 shows the pattern of argument that can be used to support the claim that a 
Hazardous Software Failure Mode is absent in the contributory software functionality of an 
adaptive system.  Firstly, we are concerned about being able to argue that an initial state of 
the system cannot lead to the failure (InitialHSFM).  Supporting this claim relies upon an 
ability to know, interpret and analyse the ‘initial’ state of the adaptive system.  (In the case 
of Kurd’s Safety Critical Artificial Neural Network, this involved being able to perform rule 
extraction to capture the rules implicit in the operating behaviour of the network.)  It should 
be recognised that this initial safe state may not be the initial development state of the 
adaptive system.  As described earlier, it can be desirable to develop adaptive systems in 
domains where the initial behaviour of the system is only partially defined, and the 
adaptation capability of the system is used to modify and add to this behaviour.  Such an 
initial development state may already be hazardous (e.g. the hazard of omission arising from 
partially defined behaviour.)  
 

Having argued the safety of the initial state of the CSF, it is then necessary to argue that 
adaptation of that CSF cannot lead to the introduction of the failure mode (AdaptHSFM).  To 
argue this claim requires detailed knowledge of the adaptation mechanism for the CSF 
(AdaptMech).  
 
A distinction must be made when arguing the safety of any adaptation of the CSF as to 
whether the adaptation is allowed in operation (on-line learning) or whilst the system is out 
of operation (off-line learning). This is represented in the pattern as the choice between 
OnLAdaptHSFM and OffLAdaptHSFM.  The key distinction between online and offline 
learning is that for off-line learning, we may be able argue that the behaviour that was 
derived by learning is not unsafe, whilst with on-line learning we must argue that the 
process of adaptation cannot introduce behaviour that is unsafe. 
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Figure 16 – Hazardous Software Failure Mode Absence Argument 
 
For off-line learning the supporting goal OffLAdaptHSFMCheck suggests the possibility of 
checking the state of the CSF following any learning episode (just as was suggested for the 
initial state).  The inability to check the adapted state of the CSF is a potential obstacle to 
supporting this goal. For example, Cukic, in [18], observes that the functional properties of 
an adaptive system cannot be inferred by a static analysis of the software; its functional 
properties at any time can only be derived from knowledge of both the system software and 
its dynamic state. 
 
For an adaptive system employing on-line adaptation unsafe adaptations cannot be allowed 
to take place (at least not without undermining AbsHSFM{type}). The following section 
explores how it may be possible to argue the safety of the adaptation process (in support of 
AdaptHSFMProc). 
 

3.10 Safe Adaptation 
 

There are two possible supporting arguments to address the claim that the adaptation 
process cannot lead to the introduction of a hazardous failure mode (AdaptHSFMProc).  The 
first possible argument is that ‘hazardous’ adaptation stimuli (i.e. stimuli that could result in 
the introduction of the hazardous failure mode) are not presented to the adaptation 
mechanism.  The principal difficulty in this argument lies in being able to determine the 
‘hazardous’ set of stimuli (UnsafeStimuli).  This problem is exacerbated where the time order 
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of the presentation of stimuli is key to determining the nature of the adaptation.  In such 
cases, it is the sequence of stimuli that could give rise to the introduction of the failure mode 
that must be determined.   To identify ‘hazardous’ stimuli requires significant understanding 
of the problem domain and of the behaviour of the adaptation mechanism.  Although it is 
easiest to imagine the ‘filtering’ of adaptation stimuli for adaptation that takes place off-line 
(e.g. training set selection for a neural network), the goal OffLAdaptHSFMStim may also have 
a role for on-line adaptation.    In operation, it may remain necessary to argue the integrity 
of any stimuli presented to the adaptation mechanism (e.g. if it is not able to ‘safely’ tolerate 
noisy or ‘incorrect’ stimuli).  It may be possible to support OffLAdaptHSFMStim through 
masking of the stimuli allowed to be passed through to the adaptation mechanism.  (This is 
analogous to the ‘wrapper’ concept [19] when using Component-Off-The-Shelf components 
known to malfunction when presented with certain inputs.)    
 
 

OnLAdaptHSFMPrev

{CSF} Adaptation that would  
lead to {HSFM} (i.e. unsafe 
behaviour) being introduced is 
prevented

OnLAdaptHSFMDet

{CSF} Adaptation that would 
lead to {HSFM} (i.e. unsafe 
behaviour) being introduced is 
determinable

OnLAdaptHSFMDetAP

{CSF} Adaptation that would 
lead to {HSFM} (i.e. unsafe 
behaviour) being introduced is 
determinable a priori

OnLAdaptHSFMDetOp

{CSF} Adaptation that would 
lead to {HSFM} (i.e. unsafe 
behaviour) being introduced is 
determinable in operation

1 of 2

OnLAdaptHSFMPrevInh

Inherent constraints in {CSF} 
Adaptation mechanism prevents 
any adaptation that would lead to 
{HSFM}

OffLAdaptHSFMStim

Adaptation stimuli will not 
result in {CSF} that exhibits 
{HSFM}

UnsafeStimuli
Adaptation stimuli 
that would result in 
{CSF} exhibiting 
{HSFM}

AdaptHSFMProc

Adaptation process does not 
result in {CSF} that exhibits 
{HSFM}

inter-pattern link

(At least 1 of 2)

 
 

Figure 17 – Safe Adaptation Argument 
 
The second approach to arguing the safety of the adaptation process is to argue that any 
possible ‘unsafe’ adaptation is prevented by inherent constraints within the adaptation 
mechanism (OnLAdaptHSFM).   Kurd’s SCANN is an example of an adaptation mechanism 
with in-built constraints [15].  The SCANN has a set of parameters which are used internally 
by functions to produce input-output mappings. The approach is to derive parameter 
constraints or safety constraints that control possible functions approximated by the SCANN. 
These safety constraints are devised through suitable safety and development processes to 
address identified failure modes associated with functional and non-functional properties. In 
addition, learning algorithms are also constrained to provide assurance that safety 
constraints are not violated.  
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The disadvantage of employing internal safety constraints is that they are more technically 
challenging to devise and enforce and are heavily dependant upon the adaptation 
mechanism.   In addition, this approach requires that safety constraints are determinable 
(OnLAdaptHSFMDet) – i.e. that it is possible to determine when an unsafe adaptation is 
being prompted as part of the adaptation process.  This argument could be supported either 
by claiming that static safety constraints are determinable prior to operation 
(OnLAdaptHSFMDetAP) or by claiming that safety constraints are determinable in operation.  
The latter of these two arguments is explored further in the next section. 
 

3.11 Determining Unsafe Adaptations 
 
The ability to determine unsafe adaptation in operation depends heavily upon the nature of 
the adaptation (learning) taking place. Consider two (non mutually exclusive) classes of 
adaptive system – model-building and behaviour-adapting.  Model-building systems build a 
model over time using information from their environment. One example of this is SLAM 
(Simultaneous Localisation and Mapping), a process by which an autonomous vehicle can 
build a map of an unknown environment whilst simultaneously keeping track of its position 
on that map [20].   Whilst model-building systems acquire data over time, behavioural 
adaptation systems attempt to extract explicit patterns or rules automatically from the data 
acquired.  An example of this is flight control system that modifies the way it uses its control 
actuators based on the response (in terms of flight behaviour) it detects in response to its 
previous use of the actuators. Such a system might, for example, might be able to continue 
normal flight in the event of an unanticipated actuator failure. In particular, it might manage 
to adapt to a failure mode that was not foreseen by the system designers. 
 
For model-building systems, the behaviour of the system depends on the model it has 
constructed. This model is potentially built during operation.  It is therefore extremely 
difficult to validate the model ahead of its use.  As discussed in the previous section, it is 
necessary to argue that the system will not build a model (i.e adapt) in such a way as to 
introduce the potential for unsafe behaviour.  
 
The argument shown in Figure 18 illustrates that the nature of the argument required to 
support the claim that unsafe adaptations can be determined during operation 
(OnLAdaptHSFMDetOp) is influenced by the nature of the adaptation taking place.  For 
behavioural adaptation systems the claim OnLBAdaptHSFMDetOp could be supported by 
arguments of constraints enforced relative to the current system state, or even relative to 
other adaptations that have taken place.  For model-building systems determining an unsafe 
model adaptation may be more difficult.  Firstly, as shown in the pattern the model itself 
cannot be considered to be unsafe.  To argue the safety of the model, it is necessary to 
consider the uses of the model (as shown by ArgOverUC and the context CSFUC).  This 
results in claims that it is possible to determine the features of the model that could lead to 
HSFM being exhibited in the use of that model.   In operation it is not possible to determine 
these ‘unsafe’ model features through comparison with ‘ground truth’.  The best arguments 
that can be hoped for will depend on cross-check with other models available (and possibly 
constructed) in operation and/or checks performed using additional domain knowledge of 
the domain of the model (e.g. checking that a model constructed does not violate the laws 
of physics.) 
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Figure 18 – Determining Unsafe Adaptations Argument 
 

4. Summary 
 
The novelty and perceived unpredictability of adaptive systems can make safety engineers 
and regulators look sceptically upon their potential use in safety-critical applications.  This 
increases the need to establish compelling safety cases that assure their safe use in safety-
critical applications.   This report has provided an overview of existing (software) safety 
standards and has discussed the extent to which compliance with these standards will result 
in a compelling case for safety for adaptive systems.   This discussion established the need to 
develop a product based approach to the justification of adaptive system safety.   To 
illustrate the key safety arguments that would be required by such an approach, this report 
has presented a collection of the argument patterns – expressed using the Goal Structuring 
Notation (GSN).  These patterns, if used together, can help establish the principal arguments 
of safety required for an adaptive system: 
 
The following patterns have been presented in this report: 
 

• Improved or Maintained Safety Argument 

• Improved Safety Argument 

• Maintained Safety Argument 

• At Least As Safe Argument 
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• Risk Acceptance Argument 

• ALARP (As Low as Reasonably Practicable) Argument 

• Top Level System-to-Software Hazard Mitigation Argument 

• Top Level System-to-Software Hazard Contribution Argument 

• Software Hazard Contributions Argument 

• Hazardous Software Failure Mode (HSFM) Classification Argument 

• Hazardous Software Failure Mode Acceptability Argument 

• Hazardous Software Failure Mode Absence Argument 

• Safe Adaptation Argument 

• Behavioural vs. Model-Building Adaptation Argument 
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